Radar satellite fleets are measuring movements on Earth like never before | Sciences


By Julia RosenFeb. 25, 2021 , 2:00 PM East Africa has been called the cradle of humanity. But the geologically active region has also given birth to dozens of volcanoes. Few have been monitored for warnings of a potential eruption, and until recently, most were believed to be dormant. Then, Juliet Biggs decided to take a closer look—or rather, a farther look.

Biggs, a geophysicist at the University of Bristol, uses a technique called interferometric synthetic aperture radar (InSAR) to detect tiny movements of Earth’s surface from space. In a series of studies, she and her co-authors analyzed satellite data on the East African volcanoes. According to their latest results, which were published last month, 14 have been imperceptibly growing or shrinking in the past 5 years—a clue that magma or water is moving underground and that the volcanoes are not completely asleep. “It’s really changed the way these volcanoes are viewed, from something that’s kind of dormant to really very active systems,” Biggs says. After data showed that the Corbetti volcano, which abuts the fast-growing city of Hawassa, Ethiopia, is inflating steadily at a rate of 6.6 centimeters per year, Biggs’s Ethiopian colleagues included it in the country’s geological hazard monitoring network. A port explosion rocked Beirut in August 2020. Before-and-after radar images were used to identify areas (red) with surface changes due to damaged buildings.

And the flood of InSAR data is growing fast. Since 2018, the number of civil and commercial SAR satellites in orbit has more than doubled. And at least a dozen more are set to launch this year, which would bring the total to more than 60. With the help of computing advances that make data processing easier, the satellite fleets may soon be able to detect daily or even hourly surface changes at just about every patch of ground on Earth. ARIA; JPL-CALTECH; EARTH OBSERVATORY OF SINGAPORE; NANYANG TECHNOLOGICAL UNIVERSITY; NASA EARTH APPLIED SCIENCES DISASTERS PROGRAM; MODIFIED COPERNICUS SENTINEL DATA (2020)

With InSAR, scientists are tracking how ice streams flow, how faults slip in earthquakes, and how the ground moves as fluids are pumped in or out. “Everywhere you look on Earth, you see something new,” says Paul Rosen, an InSAR pioneer at NASA’s Jet Propulsion Laboratory (JPL). “It’s a little bit like kids in a candy store.” No other technology could produce such a comprehensive survey. Individual GPS stations can track surface movements of less than 1 millimeter, but InSAR can measure changes almost as subtle across a swath hundreds of kilometers wide. That has made it a vital tool for earth scientists studying the heaves and sighs of our restive planet. “We tend to think of the ground as this solid platform,” Biggs says, “and actually, it’s really not.”

Many believe InSAR will eventually underpin our daily lives. From measuring the water stored in mountain snowpacks to enabling quick responses to natural disasters, InSAR data will prove invaluable to governments and industries, says Cathleen Jones, a science team leader for NISAR, an upcoming joint SAR mission from NASA and the Indian Space Research Organisation (ISRO). “I want it to become so socially relevant that they can’t go back to not having this data.” As the technology grows more powerful and ubiquitous, InSAR is spreading beyond the geosciences. With InSAR data, railroads are monitoring the condition of their tracks and cities are monitoring shifts in buildings caused by construction. “It’s popping up everywhere,” says Dáire Boyle, who follows trends in the space industry for Evenflow, a consulting firm in Brussels. Analysts value the SAR market at roughly $4 billion, and expect that figure to nearly double over the next 5 years.

Rulers of Earth Synthetic aperture radar, the “SAR” on which InSAR depends, originated in the 1950s as a tool for airborne military reconnaissance. Like traditional radar, SAR instruments captured images of the planet by sending out microwave pulses and recording the echoes. And like a traditional radar, the instruments could penetrate clouds and worked equally well at night. A key difference was the “synthetic” aspect of SAR. Larger radar antennas, like larger apertures on a camera, collect more of the echoes and enable sharper pictures. But building a single antenna large enough to take a high-resolution image isn’t practical. Researchers realized they could instead create an artificially large aperture by combining the signals received on a much smaller antenna as it moved through space. Today, SAR satellites with antennas just a few meters across can produce images with pixel resolutions as sharp as half a meter—better than many satellite-borne cameras. SAR images, on their own, suffice for many types of surveillance, from counterterrorism to tracking oil spills in the ocean. But InSAR goes further, by looking for differences between multiple SAR images. The technique takes advantage of phase information in the returning microwaves—in other words, where a signal is in its sinusoidal path when it hits the antenna. Any phase difference in the signal between SAR images taken from the same position at different times means the round-trip distance has changed, and can reveal surface movements down to a few millimeters. “There’s nothing else that compares to it,” says Michelle Sneed, a hydrologist at the U.S. Geological Survey. “I’m still amazed by it after a couple of decades.”

News Highlights Space

  • Headline: Radar satellite fleets are measuring movements on Earth like never before | Sciences
  • Check all news and articles from the Space news information updates.
Disclaimer: If you need to update/edit/remove this news or article then please contact our support team.
For Latest Updates Follow us on Google News
Bollyinside - US Local News & Breaking News Stories
Compare items
  • Total (0)